

THE COMMERCIALIZATION OF SPACE: BUILDING A NEXT-GENERATION INDUSTRY

SPONSORED BY: FF Source County Economic Development Authority

WELCOME & SUMMIT INTRODUCTION

GEORGE THOMAS

President & CEO Connected DMV

Fairfax County Economic Development Authority

AGENDA

- Plenary Sessions 10:30AM-12:00PM
 - Summit Kickoff
 - George D Thomas (President & CEO, Connected DMV)
 - Welcome
 - Nicolas Maubert (CNES Representative to the US and Space Counselor, Embassy of France in the US)
 - Keynote Address
 - A.C. Charania (Chief Technologist, NASA)
 - Fireside Chat
 - John Serafini (CEO, HawkEye 360)
 - Preston Dunlap (Founder & CEO, Arkenstone Ventures)
 - The DMV's Role
 - Victor Hoskins (CEO, Fairfax County EDA)
- Lunch 12:00PM-12:45PM
- Visioning Workshop 12:45PM-2:00PM
- Risks & Actions Workshop 2:00PM-2:50PM
- Summit Close & Networking 2:50PM-3:00PM

WELCOME

NICOLAS MAUBERT

CNES Representative to the US and Space Counselor Embassy of France in the US

SUMMIT REGISTRANTS

SUMMIT INTERNATIONAL PRESENCE

PROPRIETARY & CONFIDENTIAL | 7

GLOBAL MARKET OVERVIEW

The global space market has a **current valuation of \$600 billion**, estimated **to grow to \$1 trillion by 2040**. The U.S. space industry has experienced significant growth in recent years. When adjusted for inflation, the **space economy grew by 11.4% between 2012 and 2021**.^[1]

Highlights:

- 77% commercial share of the space sector vs. Government programmes.
- 60,000 100,000 satellites estimated by 2030 vs. 11,000 launched in the past 60 years.
- \$47.8bn private investment since 2015 across over 600 companies.
- 95% of space sector companies were revenue-generative that received investment in 2022 vs. 56% in 2015.
- 63% of investors were 'first-timers' in the sector during the investment peak in 2021.
- 80% of space investment driven by VC firms in 2022, who have made over 1,000 deals since 2015.
- 163 disclosed exits from private space investments since 2015. [2]

THE SPACE ECONOMY

EIU RANKING OF THE SPACE ECONOMY BY COUNTRY

CURRENT KEY FUNCTIONS

Heat map	Overall	Activity	Funding	Trade
US	1	1	1	3
China	2	2	2	8
France	3	7	5	1
UK	4	5	7	4
Germany	5	10	7	2
Canada	6	8	13	7
Italy	7	13	9	9
South Korea	8	12	10	10
Spain	8	14	12	6
India	10	6	6	21
Japan	11	4	4	30
Israel	12	16	18	5
Brazil	13	9	26	11
Turkey	14	18	19	15
Australia	15	10	27	22
Switzerland	16	28	21	11
Russia	17	3	3	57
Netherlands	18	33	19	13

Source: EIU

FRANCE'S LEADERSHIP IN SPACE

France is as a leader in space trade, driven by strong exports of satellites, spacecraft, and launch services.

In 2023, France's space exports reached \$2.2 billion, outpacing other nations.

The European Space Agency's projects, including the Ariane 6 launch vehicle, have played a pivotal role in this success.

Credit: ESA/CNES/Arianespace – Photo Optique Video du CSG – P. Piron

US OVERVIEW

- Including both public and private spending, the \$546 billion space economy is expected to grow more than 40 percent by 2027¹
- Fiscal Year (FY) 2025 budget proposes \$75.6 million for the Office of Space Commerce (OSC), a \$10.6 million increase above the FY2024 enacted $|eve|^2$
- Private market firms invested \$12.5 billion into space companies in 2023, a 30 percent jump from the prior year³

the space economy supports

A HISTORIC SHIFT

In 2019, **95% of the estimated revenue** earned in the space sector was from the *space-for-earth* economy, including goods or services produced in space for use on Earth, such as GPS, internet and telecommunication infrastructure, and weather prediction.

This economy is booming and is projected to grow despite overcrowding and monopolization.

In contrast, the *space-for-space* economy has been dormant since the 1970s but is now poised for rampant growth with the achievement of a key milestone. **The cost cost per kilogram of payload significantly decreased.** This opens incredible opportunities for industry, society, and science. The economy for goods and services produced in space for use in space includes space infrastructure, space-based research, mining, and exploration.

Finally, the *earth-for-space* economy is also poised for significant growth to support the space-for-space economy as adjacent industries and sectors, including information technology, telecommunications, data/AI/ML, and quantum, are all going to **scale and drive new capabilities across sectors**, including life sciences, energy, defense, and many others.

PRIVATE INVESTMENT

- Government agencies traditionally led space. Now, private companies are driving critical innovation
- Declining launch costs, technological advancements, and growing investor interest have fueled this commercial space revolution
- Private funding is starting to drive the new space landscape

Estimated Private Funding Levels by 2040, Citi

THE NEW SPACE LANDSCAPE

Satellite Launch

Satellite Internet

Lunar Landing

Asteroid Mining

Space Research

Manufacturing

Other

Space Debris Space Tourism

Earth Observation

Deep Space Exploration

Source: Morgan Stanley Research

Universe includes 93 companies, 90 of which are discrete (SpaceX and Blue Origin appear in multiple subindustries)

- **Diverse applications**: Growing range of applications
- **Commercialization & privatization**: Companies are leading innovation
- *Reduced costs & increased access*: Advancements make space more accessible and affordable
- *Increased competition & innovations:* Dynamic environment driving innovation
- **Global participation:** A growing number of nations and companies are joining the space race

GREATER WASHINGTON SELECT SPACE ASSETS

Creator: Kieran Collinson, Connected DMV

VGIN, Esri, TomTom, Garmin, FAO, NOAA, USGS, EPA, NPS, USFWS

KEYNOTE

A.C. CHARANIA

CHIEF TECHNOLOGIST NASA

National Aeronautics and Space Administration

DRIVING INNOVATION

In Partnership

A.C. Charania | NASA Chief Technologist

www.nasa.gov

December 3, 2024 | The Commercialization of Space - Opportunities for the DMV

A.C. Charania

NASA CHIEF TECHNOLOGIST

OFFICE OF TECHNOLOGY, POLICY, AND STRATEGY (OTPS) AND AGENCY CHIEF TECHNOLOGIST (ACT) ANNUAL REPORTS

View All Public OTPS Reports

Vision

Exploring the secrets of the universe for the benefit of all.

Mission

NASA explores the unknown in air and space, innovates for the benefit of humanity, and inspires the world through discovery.

WHY GO? BENEFITS TO HUMANITY

NASA Directorates

Aeronautics Research Mission Directorate - ARMD

Space Technology Mission Directorate -STMD

Science Mission Directorate -SMD

Exploration Systems Development Mission Directorate -ESDMD

Space Operations Mission Directorate -SOMD

Mission Support Directorate - MSD

NASA Centers and Facilities

UNDERSTANDING NASA A PRELIMINARY TACTICAL STARTING POINT

NASA - Yearly President's Budget Request

NASA SMD – Science Plan, Decadal Surveys

NASA ESDMD - Architecture Definition Document

NASA ARMD - Strategic Implementation Plan

NASA STMD - Civil Space Shortfalls

NASA Technology Portfolio Management System (TechPort)

AGENCY CHIEF TECHNOLOGIST TECHNOLOGY ANALYTICS RESEARCH & DEVELOPMENT INVENTORY STUDY (TARDIS)

Technology Analytics Research & Development Inventory Study (TARDIS)

NASA defines TECHNOLOGY as "a solution that arises from applying the disciplines of engineering science to synthesize a device, process, or subsystem to enable a specific capability."

NASA AERONAUTICS VISION

In-Time System-Wide Safety Assurance

Subsonic Transport

Assured Autonomy for Aviation Transformation

High-Speed

Commercial Flight

4

Airspace

Advanced Air Mobility

First Mission (Uncrewed Flight Test)

COMPLETE

ARTEMIS II

First Crew

ARTEMIS III

First Human Surface Landing

Artist's Concept

ARTEMIS IV

First Lunar Space Station Assembly Mission

ARTEMIS V

Crewed Mobile Surface Exploration, Gateway Expansion

Artist's Concept

LUNAR CAPABILITIES AND TECHNOLOGY

ASTROBOTIC TECHNOLOGY

INTUTIVE MACHINES

FIREFLY AEROSPACE

. .

CLPS Landing: Intuitive Machines

Human Landing System

LS-

ASA

Credit: Blue Origin

NAS

......

Human Landing System

HLS

Lunar Terrain Vehicle

LTV

Credit: Intuitive Machines

Credit: Lunar Outpost

Moon to Mars Segments

Human Lunar Return

Initial capabilities, systems, and operations necessary to re-establish human presence and initial utilization (science, etc.) on and around the Moon.

Foundational Exploration

Expansion of lunar capabilities, systems, and operations supporting complex orbital and surface missions to conduct utilization (science, etc.) and Mars forward precursor missions.

Sustained Lunar Evolution

Enabling capabilities, systems, and operations to support regional and global utilization (science, etc.), economic opportunity, and a steady cadence of human presence on and around the Moon.

Humans to Mars

Initial capabilities, systems, and operations necessary to establish human presence and initial utilization (science, etc.) on Mars and continued exploration.

NASA STMD -CIVIL SPACE SHORTFALLS

Shortfall: Identified technology area requiring further developments to meet future exploration, science, and other mission needs

NASA compiled an initial list of 187 shortfalls organized into 20 capability areas

The shortfall description document and feedback form were organized accordingly

AH5-353: Recovering & Recycling O₂ from Metabolic CO₂ <u>AH5-760</u>: Oxygen Generation System improved reliability and decreased complexity <u>AH5-787</u>: Oxygen Generation for low pressure cabin environments <u>AH5-878</u>: High Pressure Oxygen for EVA tank resupply <u>AH5-1029</u>: Highly reliable, closed-loop-forward CO₂ removal systems <u>AH5-1222</u>: Medical O₂ Generation & Supply

CO₂ removal at <2.5 mmHg-enabling, <2.0 mmHgenhancing demonstrated at 14.7 psia and at future surface habits pressure Reduction in mass/kg O₂ produced >75% oxygen recovery from CO₂ Capability to cherkarg EVA Q₂ bottle Enriched medical oxygen (50-90% vol)

Capability Area	# of Shortfalls
Advanced Habitation Systems	16
Advanced Manufacturing	12
Advanced Materials & Structures	4
Autonomous Systems & Robotics	23
Avionics	7
Communication & Navigation	4
Cryogenic Fluid Management	5
Dust Mitigation	3
Entry, Descent & Landing	13
Excavation, Construction & Outfitting	9
In-Situ Resource Utilization	10
In-Space Servicing, Assembly & Manufacturing	9
Orbital Debris	3
Power	8
Propulsion	18
Sensors & Instruments	12
Small Spacecraft	8
Surface Systems	10
Thermal Management Systems	
Miscellaneous	5

NATIONAL TECH BASE PRIORITIES

Publicly-transparent, rigorously-developed process by which we establish our priorities based on comprehensive prioritized needs of our stakeholders

Projects Project 2 1525 Project 1 1219 Project 21 1213 Project 13 1135 Project 9 1101 1050 Project 18 974 Project 20 Project 11 535 Proiect 4 905 Proiect 24 836 Proiect 8 393 Project 23 757 658 Project 17 Project 16 601 Project 10 570 Project 15 568 829 Project 6 Project 5 523 507 Project 19 Project 14 490 Project 22 393 Project 3 340 Project 12 329 Project 7 225

Roadmaps

NASA STMD - INTEGRATED SHORTFALL RANKING (1-30)

Integrated Rank	Average Integrated Score	Shortfall ID	Category
1	8.1035	1618: Survive and operate through the lunar night	Thermal Management Systems
2	7.6118	1596: High Power Energy Generation on Moon and Mars Surfaces	Power
3	7.4345	1554: High Performance Onboard Computing to Enable Increasingly Complex Operations	Avionics
4	7.3831	1557: Position, Navigation, and Timing (PNT) for In-Orbit and Surface Applications	Communication and Navigation
5	7.2473	1545: Robotic Actuation, Subsystem Components, and System Architectures for Long-Duration and Extreme Environment Operation	Autonomous Systems and Robotics
6	7.2076	1552: Extreme Environment Avionics	Avionics
7	7.1961	1519: Environmental Monitoring for Habitation	Advanced Habitation Systems
8	7.1679	709: Nuclear Electric Propulsion for Human Exploration	Propulsion: Nuclear
9	7.1145	1304: Robust, High-Progress-Rate, and Long-Distance Autonomous Surface Mobility	Autonomous Systems and Robotics
10	7.0946	1520: Fire Safety for Habitation	Advanced Habitation Systems
11	7.0517	1531: Autonomous Guidance and Navigation for Deep Space Missions	Autonomous Systems and Robotics
12	7.0449	1591: Power Management Systems for Long Duration Lunar and Martian Missions	Power
13	7.0341	702: Nuclear Thermal Propulsion for Human Exploration	Propulsion: Nuclear
14	7.0315	1559: Deep Space Autonomous Navigation	Communication and Navigation
15	6.9684	1527: Radiation Countermeasures (Crew and Habitat)	Advanced Habitation Systems
16	6.9478	1526: Radiation Monitoring and Modeling (Crew and Habitat)	Advanced Habitation Systems
17	6.9465	879: In-space and On-surface, Long-duration Storage of Cryogenic Propellant	Cryogenic Fluid Management
18	6.8425	1548: Sensing for Autonomous Robotic Operations in Challenging Environmental Conditions	Autonomous Systems and Robotics
19	6.8039	1558: High-Rate Communications Across The Lunar Surface	Communication and Navigation
20	6.7919	1626: Advanced Sensor Components: Imaging	Sensors and Instruments
21	6.7837	792: In-space and On-surface Transfer of Cryogenic Fluids	Cryogenic Fluid Management
22	6.7199	1569: High-Mass Mars Entry and Descent Systems	Entry Descent and Landing
23	6.7110	1525: Food and Nutrition for Mars and Sustained Lunar	Advanced Habitation Systems
24	6.6953	1571: Navigation Sensors for Precision Landing	Entry Descent and Landing
25	6.6892	1573: Terrain Mapping Capabilities for Precision Landing and Hazard Avoidance	Entry Descent and Landing
26	6.6618	1562: Advanced Algorithms and Computing for Precision Landing	Entry Descent and Landing
27	6.5927	1597: Power for Non-Solar-Illuminated Small Systems	Power
28	6.5922	1568: Entry Modeling and Simulation for EDL Missions	Entry Descent and Landing
29	6.5842	1516: Water and Dormancy Management for Habitation	Advanced Habitation Systems
30	6.5694	1524: Crew Medical Care for Mars and Sustained Lunar	Advanced Habitation Systems

NASA'S NATIONAL ECONOMIC IMPACT

NASA Employment Impact by State

Report: NASA Economic Impact Report

AGREEMENT TYPES/LEGAL AUTHORITIES AVAILABLE FOR PARTNERSHIPS

	Partner Type						
Activity Type	Domestic Commercial	Federal Agency (as customer of NASA)	Federal Agency (as supplier to NASA)	State and Local Government	Foreign Non- Government	Foreign Government or Agency	Non- Profits/ Universities
NASA Provides Reimbursable Services ⁹	Space Act authority (SAA) CSLA CRADA	Interagency Agreement (31 U.S.C. § 1535) or other appropriate relevant authority ¹⁰	N/A	SAA CSLA	SAA	SAA and 51 U.S.C. §§ 20102(d)(7) and 20115	SAA CRADA
Joint Activity (No Funds Exchanged) – Nonreimbursable ¹¹	SAA CRADA (with cost waiver)	Typically 51 U.S.C. § 20113 or other appropriate relevant authority	Typically 51 U.S.C. § 20113 or other appropriate relevant authority	SAA	SAA and 51 U.S.C. §§ 20102(d)(7) and 20115	SAA and 51 U.S.C. §§ 20102(d)(7) and 20115	SAA CRADA
NASA Provides funding (Non-acquisition)	SAA ¹² Cooperative Agreement	N/A	N/A	Grant Cooperative Agreement	N/A	N/A	Grant Cooperative Agreement
NASA Provides In-Kind Support Primarily for Benefit of Partner	SAA (Unfunded)	N/A	N/A	SAA (Unfunded)	N/A	N/A	SAA (Unfunded)
Loan of Equipment ¹³	Equipment Loan Form – NF 893	Equipment Loan Form – NF 893	Equipment Loan Form – NF 893	Equipment Loan Form – NF 893	SAA and Equipment Loan Form – NF 893	SAA and Equipment Loan Form NF 893	Equipment Loan Form – NF 893

FY23 NASA Non-Procurement Partnership highlights include:

•2,628 active domestic and international partnership Agreements

•629 new domestic and 109 new international agreements

•Active partnerships with **587** different non-Federal partners across the U.S.

• Partnerships in 47 of 50 states

PARTNERING WITH NASA

Scan for the NASA Partnerships Page

Scan for the NASA Center Chief Technologists

NASA **Partnerships**

Scan for the NASA Chief Technologist Panel at the 2024 Aviation Forum and ASCEND Conference

FIRESIDE CHAT

JOHN SERAFINI CEO, HAWKEYE 360

PRESTON DUNLAP *CEO, ARKENSTONE VENTURES*

PROPRIETARY & CONFIDENTIAL | 45

THE ROLE OF THE DMV

VICTOR HOSKINS

PRESIDENT & CEO FAIRFAX COUNTY ECONOMIC DEVELOPMENT AUTHORITY

THE COMMERCIALIZATION OF SPACE: BUILDING A NEXT-GENERATION INDUSTRY

SPONSORED BY: FF Source County Economic Development Authority

VISIONING WORKSHOP

RISKS & ACTIONS WORKSHOP

CONNECT WITH US & Get involved

CONTACT US AT SPACE@CONNECTEDDMV.ORG OR SCAN THE QR CODE TO JOIN THE CONVERSATION & EXPLORE OPPORTUNITIES

